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Characterization of tracer cascade in physical space

B.L. Hua, P. Klein, and G. Lapeyre

Laboratoire de Physique des Oc6ans, IFREMER, BP 70; 29280 Plouzan; France
Also at Laboratoire de M6t6orologie Dynamique, 24 Rue Lhomond, 75230 Paris Cedex 05; France

Abstract. Geophysical turbulent fluids are characterized by the presence
of organized energetic structures which control tracer transport and stirring,
while enabling a tracer cascade down to the smallest scales. In order to
understand the physical mechanisms involved in this turbulent tracer cascade,
we focus on the dynamics underlying the formation of tracer gradients which
are necessarily associated to this cascade. We show that the dynamics of
tracer gradients in physical space is mainly governed by their orientation
with respect to the compressional eigenvector of the strain tensor. This
relative angle results from the competition between strain and the "effective
rotation" (due to both vorticity and rotation of strain axes). The implication
is that tracer gradients (be they passive or active) should align with specific
directions of the flow field, which depends only on the local velocity and
acceleration gradient tensors in physical space. Most of the tracer stirring is
thus occurring at specific locations that can be identified analytically. These
results have been confirmed by direct numerical simulations and enable a
better characterization of the cascade in physical space.

1. Introduction

The widely observed tracer cascade toward small spa-
tial scales in geophysical flows is known to result from
stirring by mesoscale eddies. It corresponds to the for-
mation of strong horizontal gradients, such as those
indicated by the chlorophyl concentration at the sea
surface as observed by satellite (Figure 1). Another
observed characteristic is that horizontal gradients of
different tracer fields are often found at the same lo-
cations in physical space. This is consistent with the
interpretation that such locations result from the com-
mon topology of the underlying flow that advects the
different tracer fields. This is observed for instance in
Figure 2, which presents airborne measurements of dif-
ferent mixing ratios in the southern stratosphere, show-
ing sharp horizontal gradients coinciding at several loca-
tions (Tuck et al., 1992). On the other hand, the differ-
ent strengths of the relative mixing ratios I Vcl/c (where V..
c is the mixing ratio) that are observed in Figure 2, are mg/m3

the result of the differences in the past history of the Seawifs 22 ocv 1997 01 37Z chlorophyil-

tracer fields, which may be caused by differences in their
sources, forcings and sinks. Figure 1. Chlorophyll concentration as observed by

SEA-WIFF

45



46 HUA, KLEIN, AND LAPEYRE

However, the existence of intense gradients in tracer
distribution does not always imply the occurrence of

AAO ý870922): 03. NOy. N2,0 CIO strong mixing of the tracer field. Figure 3 presents the
. . vorticity distribution of an isolated vortex which is in-

0.9 \ fluenced by an externally prescribed strain field (Mari-
' "'•' '! otti et al., 1994). This setup leads to a constant erosion

Pil :j P of the vortex structure, which is taking place through
0.7[ -- the ejection of filaments which will eventually be de-

6- • V6 stroyed by small-scale mixing. However, as seen in the

•- , . -insert of Figure 3, the distribution of vorticity observed
• 0.0, K"• along a horizontal mid-section across the vortex shows

0. ",0 A.. 4 a significant reinforcement with time of the gradients
at the vortex boundary. Such a phenomenon is the op-
posite of mixing and corresponds to the formation of a

8...- barrier to transport that inhibits exchanges across the

0.1_ "vortex boundary.
. , -. ".... Our main purpose has been to attempt to character-

64 5 58 60 6 66 5 6 ize dynamically this tracer cascade in physical space.
at,iude S) The specific objectives are to study the equations gov-

erning the dynamics of tracer gradients in order to lo-
Figure 2. Different mixing ratios measured in the calize the barriers to mixing as well as the regions of
southern stratosphere (from Tuck et al., (1992). filament production. The chosen approach is to use

information from both the velocity dZ and accel-
eration fields D17 in order to go beyond the simple
kinematic approach of the chaotic advection literature,
which relies on the sole knowledge of the velocity field.

In what follows, we have moreover made the assump-
- .. tion that as far as oceanic mesoscale eddies are con-

cerned, the classical framework of the quasigeostrophic
turbulence is a valid first step.

The paper is organized as follows. We first recall the
basic ingredients that influence the evolution of tracer
gradient by considering simple flows (section 2). The
equations governing the dynamics of tracer gradients
are then studied in section 3, leading to the prediction
of preferred alignment of tracer gradients with specific

lILV orientations for different regions of the flow, which are
AIL [found to depend on the tensors of velocity gradient and

-.0 acceleration gradients VWZ and V D-. Section 4 presents
"results from numerical simulations of two-dimensional

.turbulence in free-decay, providing evidence of statis-

W, tical validation of alignment properties of the tracer
cascade in physical space. Section 5 summarizes our

"a'. results and mentions possible applications of the tracer

gradient dynamics.

0 ea V LM L 0 .e• _V LV W_ 60 6 a e ý.v 'X•v• v.•..V.%V 2. Simple flows

Figure 3. Vorticity field of an isolated vortex submit- For a pure strain field, the streamfunction field V )

ted to a externally prescribed strain field (Mariotti et u xy corresponds to the blue isolines of Figure 4, where

al., 1994). a denotes the strain-rate magnitude. An initial tracer
blob (red continuous isoline) will be stretched with time
into an elongated pattern (the red dotted isoline) and
the tracer gradient Vq (black vector) will tend to align
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Figure 4. Pure strain field

Figure 5. Pure vorticity field

with time with the compressional principal axis of the
strain tensor (denoted by S- in Figure 4). This align-
ment is associated with an exponential growth of the
tracer gradient norm. s+

In the case of a pure vorticity field the streamfunc- / \/vq
tion field is 0 = ý (x2 + y2 ), where w denotes the vor-
ticity. The initial tracer blob (red continuous isoline)
simply rotates with time (the red dotted isoline) and so
does the tracer gradient vector (Figure 5). There is no
growth of the tracer gradient norm. The above simple /
limits can be obtained from the results of Okubo (1970)
and Weiss (1991). For a passive tracer q that obeys the
conservation equation

Dq Figure 6. Finite size axisymmmetric vortex
D-- = 0,
Dt 0

its gradient will obey while in regions where vorticity dominates (A\ < 0), the

DVq solution corresponds to a simple rotation of the gradient
-y- = _[Vu2J* Vq. (1) vector.
Dt

* denotes tIt is easy to find simple counterexamples where the
[Vuor fotes the transpose of the velocity gradient ten- Okubo-Weiss results do not hold (Pierrehumbert and
sor for which eigenvalues are +-A'/ 2, where A = o2 

-w Yang, 1993). Consider the case of an axisymmetric

depends on the competition between strain and vortic- Yag193.Cniethcseoanxsymrc
deed Bonh authes cmpet btee n a suptaion thand vort*ic- vortex of finite size, such that outside the vortex core,
ity. Both authors made the assumption that [V * is the vorticity is w = 0, while the strain rate is o 54 0
slowly varying along a Lagrangian trajectory ( -D2t 0) and streamlines are still circular. In such a region,
so that the tracer gradient equation can be integrated, A = a2 - 2 = a 2 > 0 and the Okubo-Weiss crite-
yielding Vq = Vq0 exp (±-n/2 t). rion predicts an exponential growth. However, such a

case can be integrated analytically (Lapeyre et al., 1999)

Thus in regions where the strain rate dominates (A > 0), and the solution is found to correspond to a continuous
there is an exponential growth of the gradient norm, rotation of the tracer gradient with a linear growth of
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its norm with time. The Okubo-Weiss criterion fails Vq

because the rotation of the principal axes of the strain-
rate tensor has not been taken into account, and this
implies 7 0 0. Along the circular Lagrangian tra-
jectories (Figure 6), the principal axes constantly ro-
tate so that the tracer gradient vector cannot align
with the compressional strain axis, and the initial tracer
blob (continuous red line) is mostly linearly distorted 0 /4

with time. Other simple counterexamples can be con-
structed, involving a rotation of the strain-rate principal
axes, where the Okubo-Weiss criterion fails and can be Figure 7. definition of angles 0, 0 and C
found for instance in Young (1999).

3. Dynamics of tracer gradient time of the gradient norm. Introducing a nondimen-sional Lagrangian time which is related to the strain-

The equation that governs the dynamics of tracer rate magnitude
gradient (1) can be explicit as

DVq = j( an as+W W)Vq, (2) 10 o(t')dt',

one can rewrite both scalar equations as

where the following quantities have been used D log JVqj
2 =-sin

ODr

an =- :,u-O ,yv (3)

a, = .v + ayu Dr = r - cosC.
a an + 0S The orientation equation (3b) involves a nondimen-

w = (9v - ayu. sional parameter r which is defined as

It is important to note that equation (2) is a vector w + 2DOIDt effective rotation
equation and corresponds to two degrees of freedom r - strain rate
that can be chosen as the tracer gradient norm IVqJ U strain rate
and its orientation 0, The dimensionless parameter r is the ratio between "ef-

fective rotation" 1 in the strain basis (i.e. the rotation
cos 9 effects due to both the vorticity and the rotation of the

Vq = 1W ( sin9 }" principal axes of the strain-rate tensor) and the magni-
tude of the strain rate (which tends to align the gradient

An angle 0 that characterizes the orientation of the with a strain eigenvector).
strain axes with respect to the coordinate axis (Figure An important remark is that r remains invariant in
7) can be introduced a change of coordinates involving solid body rotation,

/0an- I sin 2 . while the Okubo-Weiss eigenvalues A do not remain

as cos 2¢ invariant in such a change of coordinates. The new
physics that have been taken into account correspond

The two scalar equations for the norm IVql and the gra- to the quantity D that takes into account the fact that
dient orientation 0 are derived in Lapeyre et al. (1999). the principal axes of strain can vary along a Lagrangian

trajectory, also implying that ' : 0.

Dt = -u sin(2(0 + 0)) Note that the dynamics of the orientation equation
(3b) is completely independent of the actual value of the

2 = w - a cos(2(0 + 0)) gradient norm JVqj, and the solution to (3b) will dependDt
on the actual value of r, whether r > 1 or r < 1.

Both scalar equations depend only on the relative
angle Strain-dominated regions

C = 2(0 + 0) By definition, this corresponds to Irl < 1. Making

(Figure 7) between Vq and the compressional axis S-. the weaker assumption that both r and the strain mag-
We have seen in previous simple examples that it is
this relative angle that determines the growth rate with lWe follow the terminology of Dresselhaus and Tabor (1991).
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nitude or are slowly varying along a Lagrangian trajec-
tory, the equation for the orientation C has two fixed
points •± =-arccos r, an unstable one (+, and a sta-
ble one _. One expects a rapid alignment of the tracer
gradient with the stable orientation (-, leading to an
exponential growth rate of a- r2 for the tracer gra-
dient norm (Lapeyre et al., 1999). Conversely, the un-
stable orientation (+ corresponds to a strong decay of
JVqJ. In the case where Ir[ = 1, there is an algebraic Figure 8. vortictiy w
growth of JVqJ2 with time.

"Effective rotation" -dominated regions

In regions where the effective rotation dominates, IM

Irl > 1. There is no fixed point solution to equa- r :
tion (3)and one has a nonuniform rotation of gradient.
Since 2 is variable the gradient tends to spend most of
its time near the direction with minimal rotation rate
(D 2 /Dt 2 = 0). The most probable orientation of this

direction is a such that (Klein et al., 2000) Figure 9 r 2DDt

a = arctan (s) +(1 - sign(r))

which depends on another nondimensional parameter s of the parametere r is given in Figure 9, where green
which is defined as indicates regions where the strain dominates, blue and

SD (0r-i) red correspond to regions where effective rotation dom-
S Dt inates. In the latter regions, red corresponds to the

case when vorticity contributes the largest part of the
which measures how rapidly the stirring time scale a effective rotation while blue corresponds to the opposite
varies along a Lagrangian trajectory. In such a situa- situation. Strips of yellow correspond to Irl = 1.
tion, the gradient norm presents only a weak growth or The parameter r presents sharp transitions and also
decay rate of -a s//r2 + s2. a smooth behaviour along the longitudinal direction of

The two nondimensional parameters r and s suffice the filamentary patterns. The vortex cores are regions
to characterize the topology of stirring as well as the with r < -1 because of large w. Their periphery is
time evolution of the tracer gradient magnitude (growth composed of regions with r 2 < 1 because of large 0.

or decay). For instance, a saddle point corresponds to and regions with r > 1 because of large DO. For each
the values r = 0 and s = 0, the axisymmetric vortex vortex, we observe opposite signs of r between its core
flow to the values In = 1 and s = 0 and the strong and the part on its periphery where effective rotation
rotation limit to Ir[ >> 1. is strong. In these regions, w + 2 2- is dominated by

Finally, one can show that r and s depend on both 2 DO which is of opposite sign of w. This indicates that
the velocity gradient tensor V7 and on the acceleration a characterization of the stirring properties of vortices
gradient tensor VD11 must take into account this rotation rate.

The results for the alignment of the tracer gradient
4. Numerical simulations in strain-dominated regions, where r < 1, are checked

against the analytical prediction C ; (_ in Figure 10,
In order to test the above analytical predictions for which presents the joint p.d.f. of C + i-r/2 and r, and

alignment of the tracer gradient, numerical simulations the bold curve is cos C. The relation cos C - r is well
of freely decaying turbulence have been performed at a corroborated and this strongly validates the analytical
resolution of (1024)2. solution. On the other hand, a joint p.d.f. between

Figure 8 displays the vorticity field in a portion of ( + 7r/2 and w/0, which corresponds to the assumption
the domain where a strong vorticity filament is being of Okubo-Weiss that implies DO = 0, does not present
stretched between two cyclonic vortices. The color code such a correlation, and no alignment occurs for Okubo-
is such that red/brown corresponds to positive vortic- Weiss criterion (Figure 11). This further emphasizes
ity and blue to negative values. The corresponding field the quantitative importance of the rotation of the strain
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,.. ._ ' .- F :=

Figure 10. PDF of C + 7r/2 and r = 2 Figure 12. PDF of C and a

the parameter r

r = w+2-

.. ... ... . ... . .. . .. .. __••

J -- that measures the competition between the strain rate
and the effective rotation which takes into account both

- -the vorticity and the rotation rate of the principal axes
of the strain-rate tensor along a Lagrangian trajectory
(Lapeyre et al., 1999). Strong gradient growth occurs
when Irl < 1. The second regime needs another param-

. eter s
L .D(a- 1)

I 8 Dt
that measures the variation of the stirring time scale
(0-1) along a Lagrangian trajectory (Klein et al., 2000),

Figure 11. PDF of C + 7r/2 and w/u for Okubo-Weiss and weaker growth/decay of the tracer gradient occurs
results for It[ > 1.

In both regimes, the flow topology enforces preferred
orientations for the tracer gradient vector, which will
depend on both local properties of the velocity gra-

axes. dient tensor Vi and also on the long-range spatial

The results for the alignment of the tracer gradient influence of the acceleration gradient tensor V-u
for regions where effective rotation dominates, r > 1 (Ohkitani and Kishiba, 1995; Hua and Klein, 1998).
are checked against the analytical prediction C z a in Both Vil and Vk-: are entirely diagnostic for quasi-
Figure 12, where the joint p.d.f. of C and a is plotted. geostrophic dynamics and their computation only in-
Again, the numerical simulations confirm that there ex- volves the resolution of Poisson problems in which right-
ist preferred directions of alignment of the tracer gradi- hand sides are nonlinear functions of the streamfunction
ent that depends on r and s. field at a given time (Hua et al., 1998).

These predictions based on tracer gradient dynamics
have been applied to two other problems which are also

5. Discussion related to the more general issue of stirring.
The first case corresponds to the detection of in-

To summarize, the dynamics of tracer gradients as a variant manifolds (i.e. the attracting/repelling material
function of the flow topology can be captured by two lines associated with local maxima of particle dispersion
regimes. The first one is well characterized solely by or equivalently to local maxima of tracer gradients) by
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computing the persistence of hyperbolicity defined as Okubo, A., Horizontal dispersion of floatable particles
in the vicinity of velocity singularity such as conver-

Tr f edt, gences, Deep-Sea Res., 17, 445-454, 1970.

IJ<' R. T. Pierrehumbert, and H. Yang, Global chaotic mix-
ing on isentropic surfaces, J. Atmos. Sci., 50, 2462-

along a Lagrangian trajectory in regions where Irl < 1 2480, 1993.
for a finite time. This technique enables us to locate the Rivi6re, G.,B. L. Hua and P. Klein, An analytical La-
presence of such manifolds in the immediate vicinity of grangian approach to predictability based on poten-
coherent vortices, as well as in the "far field" (Lapeyre tial vorticity gradients, what?, , 2001 in prep.
et al., 2001). For the second case, we have applied the
analytical prediction of the time evolution of the tracer Tuck, A. F., T. Davies, S. J. Hovde, M. Noguer-Alba,
gradient norm to the predictability problem with the D.pW. Fahey, S. R . Kelly, D. M. Mur-
aim of identifying the regions of most rapid growth of phy, M. H. Profitt, J. 3. Margitan, M. Loewenstein,the dynamical structures (Rivi~re et al., 2001). The J. R. Podolske, S. E. Strahan, and K. R. Chan, Polar

the ynaicalstrcturs (ivire e al, 201).The stratospheric cloud processed air and potential vor-
underlying idea is that initial perturbations that are re- tratosphe cor oessedir aotentialor-

sponsible for the rapid growth of the structures in a ticity in the northern hemisphere lower stratosphere

given flow can be viewed as perturbations of the initial at mid-latitudes during winter, J. Geophys. Res., 97,

potential vorticity field of the flow. As such, their dy- 7883-7904,1992.

namics are closely linked in physical space to the regions Weiss, J., The dynamics of enstrophy transfer in two-

which present the largest growth in potential vorticity dimensional hydrodynamics, Physica D, 48, 273-294,

gradients. Potential vorticity being a tracer field, the 1991.

above analytical predictions can be used to identify the Young, W. R., Lecture notes on Stirring and Mixing,
"sensitive" regions of most rapid growth. Geophysical Fluid Dynamics Summer School 1999,

Woods Hole.
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